

KEY CONCEPTS

0

- STOICHIOMETRY : Stoichiometry pronounced ("stoy key om e tree") is the calculations of the quantities of reactants and products involved in a chemical reaction. This can be divided into two category. (A) Gravimetric analysis (B) Volumetric analysis (to be discussed later)
 Gravimetric Analysis :
 4.1.1 Methods for solving :
 (a) Mole Method
 (b) Eactor Label Method
 Balance reaction required 4.

4.1

- Balance reaction required (b) Factor Label Method
- (c) POAC method } Balancing not required but common sense () *use it with slight care*.
- Equivalent concept } to be discussed later (d)

5. **CONCEPT OF LIMITING REAGENT.**

first step is to calculate L.R.

- 5.2
- first step is to calculate L.R. *Calculation of Limiting Reagent :* By calculating the required amount by the equation and comparing it with given amount. [Useful when only two reactant are there] By calculating amount of any one product obtained taking each reactant one by one irrespective of other reactants. The one giving least product is *limiting reagent*. Divide given moles of each reactant by their stoichiometric coefficient, the one with least ratio is *limiting reagent*. [Useful when number of reactants are more than two.] *actual yield* (c)
- **EXAMPLE 1** The percentage yield of product = $\frac{actual yield}{the theoretical maximum yield}} \times 100$ The actual amount of any limiting reagent consumed in such incomplete reactions is given by [% yield × given moles of limiting reagent] [For reversible reactions] For irreversible reaction with % yield less than 100, the reactants is converted to product (desired) and waste. **EXTRATION TERMS : General concentraction term :** Density = $\frac{Mass}{Volume}$, Unit : gm/cc Relative density = $\frac{Density of any substance}{Density of refrence substance}$ **PERCENTAGE YIELD :** The percentage yield of product = $\frac{actual \, yield}{the \, theoretical \, maximum \, yield}$
 - (°')
 - (°')

CONCENTRATION TERMS:

7.1

(a)

(b)

(a)

(b)

(c) Specific gravity =
$$\frac{Density of any substance}{Density of Water at 4°C}$$

(d) Vapour density = $\frac{Density of vapour at some temperature and pressure}{Density of H2 gas at same temperature and pressure
(d) Vapour density = $\frac{Density of vapour at some temperature and pressure}{Density of H2 gas at same temperature and pressure
(e) V** (1) Which of these are temperature dependent.
(2) Classify them as w/w, w/v, v/v ratio.
7.2 For solutions (homogeneous mixture) :
(1) Which of these are temperature dependent.
(2) Classify them as w/w, w/v, v/v ratio.
7.3 For solutions (homogeneous mixture) :
(2) Classify each given ratio as w/w, w/v, v/v and comment on their temperature dependence.
(3) W to solute and solvent in a solution.
(4) If the mixture is not homogeneous, then none of them is applicable.
(5) W** Classify each given ratio as w/w, w/v, v/v and comment on their temperature dependence.
(a) W by mass $\binom{w}{W}$:= $\frac{wt.of solute}{wt.of solute} \times 100$
(b) W $\binom{w}{V}$:= $\frac{wt.of solute}{wt.of solute} \times 100$
(c) $\Re \left(\frac{v}{V}\right)$:= $\frac{wtof solute}{volume of solute} \times 100$
(c) $\Re \left(\frac{v}{V}\right)$:= $\frac{wloes of solute}{Total moles} \times 100$
(e) Mole fraction (\mathbf{X}_{a}) := $\frac{Moles of solute}{Total moles}$
(f) Molarity (M) := $\frac{Moles of solute}{Wolume of solution in litre}$
(g) Molality (m) := $\frac{Moles of solute}{Mass of solute} \times 10^{6} = \frac{Mass of solute}{Mass of solution} \times 10^{6}$
(f) Parts per million (ppm) := $\frac{Mass of solute}{Mass of solute} \times 10^{6} = \frac{Mass of solute}{Mass of solution} \times 10^{6}$
(c) Get yourselves very much confortable in their interconversion. It is very handy.$$

 \langle

7.3 Some typical concentration terms :

Some typical concentration terms : Oleum : Labelled as '% oleum' (for e.g. 102% oleum), it means maximum amount of H_2SO_4 that can be obtained from 100 gm of such oleum (mix of H_2SO_4 and SO_3) by adding sufficient water. Work out what are the maximum and minimum value of the % H_2O_2 : Labelled as 'volume H_2O_2 (for e.g. 20V H_2O_2), it means volume of O_2 (in litre) at STP that can be obtained from 1 litre of such a sample when it decomposes according to $H_2O_2 = H_2O_2 = \frac{1}{2}O_2$ (a)

¢γ

(b)

$$\mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O} + \frac{1}{2}\mathrm{O}_{2}$$

Work out a relationship between M and volume H_2O_2 and remember it

SOME EXPERIMENTAL METHODS :

8.1 For determination of atomic mass :

Dulong's and Petit's Law : (a) Atomic weight \times specific heat (cal/gm°C) $\propto \approx 6.4$

0 98930 58881, BHOPAL Gives approximate atomic weight and is applicable for metals only. Take care of units o

specific heat.

Mass spectrometry :
$$\frac{mv}{m} = qv$$

specific heat. Mass spectrometry : $\frac{mv^2}{r} = qvB$ B is the magnitude of magnetic field r = d/2 *m* is mass of ion, *v* is velocity of ion, *r* is the distance where the ions strikes, *q* is the charge on the ion. For molecular mass determination : Victor Maeyer's process : (for volatile substance) <u>Procedure</u>: Some known weight of a volatile substance (w) is taken, converted to vapour and collected over water. The volume of air displaced over water is given (V) and the following

8.2

(a)

Procedure : Some known weight of a volatile substance (w) is taken, converted to vapour and collected over water. The volume of air displaced over water is given (V) and the following expressions are used. $M = \frac{W}{PV}RT \qquad \text{or} \qquad M = \frac{W}{(P-P')V}RT$ If aq. tension is not given If aq. tension is P' **Dus tension** : Pressure exerted due to water vapours at any given temperature. This comes in picture when any gas is collected over water. Can you guess why? **Silver salt method** : (for organic acids) <u>Basicity of an acid :</u> No. of replacable H⁺ atoms in an acid (H contained to more electronegative atom is acidic) <u>Procedure</u> : Some known amount of silver salt (w₁ gm) is heated to obtain w₂ gm of while shining residue of silver. Then if the basicity of acid is n, molecular weight of acid would be $\left(\frac{W_2}{108} \times \frac{1}{n}\right) \times M_{salt} = w_1 \text{ and molecular weight of acid} = M_{salt} - n(107)$ This is one good practical application of POAC.

Aqueous tension : Pressure exerted due to water vapours at any given temperature.

(°_°)

(b)

$$\left(\frac{w_2}{108} \times \frac{1}{n}\right) \times M_{salt} = w_1$$
 and molecular weight of acid = $M_{salt} - n(107)$

(b)

(°')

(c) **Chloroplatinate salt method :** (*for organic bases*) Lewis acid : electron pair acceptor Lewis base :electron pair donor <u>Procedure</u> : Some amount of organic base is reacted with H₂PtCl₆ and forms salt known as chloroplatinate. If base is denoted by B then salt formed (i) with monoacidic base = B₂H₂PtCl₆ (ii) with diacidic base = B₂(H₂PtCl₆)₂ (iii) with triacidic base = B₂(H₂PtCl₆)₃ The known amount (w₁ gm) of salt is heated and Pt residue is measured. (w₂ gm). If acidity of base is 'n' **a** (W₂ = 1)

then
$$\left(\frac{w_2}{195} \times \frac{1}{n}\right) \times M_{salt} = w_1$$
 and $M_{base} = \frac{M_{salt} - n(410)}{2}$

8.3 For % determination of elements in organic compounds :

(°') All these methods are applications of POAC

- (\cdot) Do not remember the formulas, derive them using the concept, its easy.
- Liebig's method : (Carbon and hydrogen) (a)

(w) Organic Compound
$$\xrightarrow{\Delta}_{CuO}$$
 (w₁) CO₂ + H₂O(w₂)

% of C =
$$\frac{w_1}{44} \times \frac{12}{w} \times 100$$

% of H =
$$\frac{W_2}{18} \times \frac{1}{W} \times 100$$

where $w_1 = wt$. of CO₂ produced, $w_2 = wt$. of H₂O produced, w = wt. of organic compound taken

Duma's method : (for nitrogen) (b)

(w) Organic Compound $\xrightarrow{\Delta}_{CuO}$ N₂ \rightarrow (P, V, T given)

use PV = nRT to calculate moles of N_2 , n.

$$. \qquad \% \text{ of } N = \frac{n \times 28}{w} \times 100$$

·

w = wt of organic compound taken

(c) **Kjeldahl's method :** (for nitrogen)

> $(w)O.C.+H_2SO_4 \rightarrow (NH_4)_2SO_4 \xrightarrow{NaOH} NH_3 + H_2SO_4 \rightarrow (molarity and volume (V_1))$ consumed given)

$$\Rightarrow \qquad \% \text{ of } N = \frac{MV_1 \times 2 \times 14}{W} \times 100$$

where $M = molarity of H_2SO_4$.

Some N containing compounds do not give the above set of reaction as in Kjeldahl's method.

EXERCISE # I

LAWS OF CHEMICAL COMBINATION

	Q.10	What mass of sodium chloride would be decomposed by 9.8 gm of sulphuric acid, if 12 gm of sodium bisulphate and 2.75 gm of hydrogen chloride were produced in a reaction assuming that the law of conservation of mass is true?[Assume none of the reactants are remaining] [Ans. 4.95 gm]								
	Q.12	Zinc sulphate crystals contain 22.6% of zinc and 43.9% of water. Assuming the law of constant proportions is to be true, how much zinc should be used to produce 13.7 gm of zinc sulphate crystal and how much water will they contain?								
	Q.13	Carbon combines with hydrogen to form three compounds A, B and C. The percentage of hydrogen in A, B and C are 25, 14.3 and 7.7 respectively. Which law of chemical combination is illustrated? [Ans. law of multiple proportions]								
S.com	Q.14	Illustrate the law of reciprocal proportions from the following data : KCl contains 52.0% potassium, KI a contains 23.6% potassium and ICl contains 78.2% iodine.								
asses		ATOMIC MASS & MOLECULAR MASS								
tekocl	Q.1	The average mass of one gold atom in a sample of naturally occuring gold is 3.2707×10^{-22} g. Use this to calculate the molar mass of gold.								
: www.	Q.2	A plant virus is found to consist of uniform symmetrical particles of 150 Å in diameter and 5000 Å long. The specific volume of the virus is 0.75 cm ³ /g. If the virus is considered to be a single particle, find its molecular weight.								
website	Q.3	Density of a gas relative to air is 1.17. Find the mol. mass of the gas. $[M_{air} = 29g/mol]$								
ige from v	Q.4	1 billion (10^9) people in India were put to work counting the atoms in a mole of gold and if each bin could count one atom per second day and night for 365 days a year, how many years would it to finish the count?								
ly Packa	Q.5 (a)	Vitamin C, ascorbic acid, has the formula $C_6H_8O_6$. The recommended daily dose of vitamin C is 60 milligrams. How many moles are you consuming if you ingest 60 mg of the vitamin ?								
d Stud	(b) (c)	A typical tablet contains 1.00 g of vitamin C. How many moles of vitamin C does this represent ? When you consume 1.00 gram of vitamin C, how many oxygen atoms are you eating ?								
E Downloa	Q.6	Precious metals such as gold and platinum are sold in units of "troy ounces", where 1 troy ounce is 31.1 grams. If you have a block of platinum with a mass of 15.0 troy ounces, how many mole of the metal do you have ? What is the size of the block in cubic centimeters ? (The density of platinum is 21.45 g/cm^3 at 20° C) (Atomic wt.of Pt. = 195)								
FRE	Q.7	One type of artifical diamond (commonly called YAG for yttrium aluminium garnet) can be represented by the formula $Y_3Al_5O_{12}$.								
	(a) (b)	What is the weight of yttrium present in a $200 - \text{carat YAG if } 1 \text{ carat} - 200 \text{ mg} ? (Y = 89, \text{Al} = 27)$								
	Q.8	A chemical commonly called "dioxin" has been very much in the news in the past few years. (It is the by $-$ product of herbicide manufacture and is thought to be quite toxic.) Its formula is $C_{12}H_4Cl_4O_2$. If you have a sample of dirt (28.3 g) that contains 1.0×10^{-4} % dioxin, how many moles of dioxin are in the dirt J								

TEKO

sample?

LIMITING REACTANT

Q.9 Titanium, which is used to make air plane engines and frames, can be obtained from titanium tetrachloride which in turn is obtained from titanium oxide by the following process :

 $3 \operatorname{TiO}_2(s) + 4C(s) + 6Cl_2(g) \longrightarrow 3\operatorname{TiCl}_4(g) + 2CO_2(g) + 2CO(g)$

A vessel contains 4.15 g TiO₂, 5.67 g C and; 6.78 g Cl₂, suppose the reaction goes to completion as written, how many gram of TiCl₄ can be produced ? (Ti = 48)

- Q.10 A chemist wants to prepare diborane by the reaction $6 \text{LiH} + 8\text{BF}_3 \longrightarrow 6\text{LiBF}_4 + B_2H_6$ If he starts with 2.0 moles each of LiH & BF_3 . How many moles of B_2H_6 can be prepared.
- Q.11 When you see the tip of a match fire, the chemical reaction is likely to be $P_4S_3 + 8O_2 \longrightarrow P_4O_{10} + 3SO_2$

, BHOPAL What is the minimum amount of P_4S_3 that would have to be burned to produce at least 1.0 g of P_4O_{10} and at least 1.0 g of SO_2

 $\begin{array}{c} \underline{GRAVIMETRIC \ ANALYSIS} \\ 1 \ \text{gm sample of } \text{KClO}_3 \ \text{was heated under such conditions that a part of it decomposed according to the equation} \\ \text{equation} \quad (1) \quad 2\text{KClO}_3 \longrightarrow 2 \ \text{KCl} + 3\text{O}_2 \\ \text{and remaining underwent change according to the equation.} \\ (2) \quad 4\text{KClO}_3 \longrightarrow 3 \ \text{KClO}_4 + \text{KCl} \\ \text{If the amount of O} \quad \text{avalued use } 146.8 \ \text{m l at S TD} \quad \text{aslaulate the } \% \ \text{huweight of } KClO_1 \ \text{in the residue} \end{array}$ Q.12

If the amount of O_2 evolved was 146.8 ml at S.T.P., calculate the % by weight of KClO₄ in the residue.

- A sample of calcium carbonate contains impurities which do not react with a mineral acid. When 2 grams **8** of the sample were reacted with the mineral acid, 375 ml of carbon dioxide were obtained at 27°C and **8** 760 mm pressure. Calculate the *II* consistent of the sample were reacted with the mineral acid. Q.13 32 760 mm pressure. Calculate the % purity of the sample of CaCO₃?
- One gram of an alloy of aluminium and magnesium when heated with excess of dil. HCl forms magnesium Q.14 chloride, aluminium chloride and hydrogen. The evolved hydrogen collected over mercury at 0°C has a 5 volume of 1.2 litres at 0.92 atm pressure. Calculate the composition of the alloy.
- r) PH: A sample containing only CaCO₃ and MgCO₃ is ignited to CaO and MgO. The mixture of oxides Q.15 produced weight exactly half as much as the original sample. Calculate the percentages of CaCO₃ and $MgCO_3$ in the sample. Ż
- FREE Download Study Package from website: www.tekoclasses.com Q.16

- Q.17
- Determine the percentage composition of a mixture of anhydrous sodium carbonate and sodium **bi** bicarbonate from the following data: wt. of the mixture taken = 2g Loss in weight on heating = 0.124 g. A 10 g sample of a mixture of calcium chloride and sodium chloride is treated with Na₂CO₃ to precipitate calcium as calcium carbonate. This CaCO₃ is heated to convert all the calcium to CaO and the final mass of CaO is 1.62g. Calculate % by mass of NaCl in the original mixture. In a gravimetric determination of P an aqueous solution of NaH₂PO₄ is treated with a mixture of ammonium and magnesium ions to precipitate magnesium ammonium phosphate Mg(NH₄)PO₄. 6H₂O. This is heated and decomposed to magnesium pyrophosphate, Mg₂P₂O₇ which is weighed. A solution of NaH₂PO₄ yielded 1.054 g of Mg₂P₂O₇. What weight of NaH₂PO₄ was present originally? Q.18 of NaH₂PO₄ yielded 1.054 g of Mg₂P₂O₇. What weight of NaH₂PO₄ was present originally ?
- of $\operatorname{NaH}_2\operatorname{PO}_4$ yielded 1.054 g of $\operatorname{Mg}_2\operatorname{P}_2\operatorname{O}_7$. What weight of $\operatorname{NaH}_2\operatorname{PO}_4$ was present originally? By the reaction of carbon and oxygen, a mixture of CO and CO₂ is obtained. What is the composition of the mixture obtained when 20 grams of O₁ reacts with 12 grams of carbon? Q.19 of the mixture obtained when 20 grams of O₂ reacts with 12 grams of carbon?
- A mixture of nitrogen and hydrogen. In the ratio of one mole of nitrogen to three moles of hydrogen, was o Q.20 partially converted into NH_3 so that the final product was a mixture of all these three gases. The mixture was to have a density of 0.497 g per litre at 25°C and 1.00 atm. What would be the mass of gas in 22.4 litres at S.T.P? Calculate the % composition of this gaseous mixture by volume.

Page 11 of 24 MOLE CONCEPT

- Direct reaction of iodine (I₂) and chlorine (Cl₂) produces an iodine chloride, $I_x CI_y$, a bright yellow solid. If you completely used up 0.508 g of iodine and produced 0.934 g of $I_x CI_y$, what is the empirical formula of the compound? Later experiment showed the molar mass, of $I_x CI_y$ was 467 g/mol. What is the molecular formula of the compound? (I = 127) Equal weights of mercury and I_2 are allowed to react completely to form a mixture of mercurous and mercuric iodide leaving none of the reactants. Calculate the ratio of the wts of Hg₂I₂ and HgI₂ formed. **EMPIRICAL & MOLECULAR FORMULA** Tha action of bacteria on meat and fish produces a poisonous compound called cadaverine. As its name and origin imply, it stinks! It is 58, 77% C, 13, 81% H, and 27, 42% N. Its molar mass is 102 g/mol. Q.21
- Q.22

- Q.23 and origin imply, it stinks! It is 58.77% C, 13.81% H, and 27.42% N. Its molar mass is 102 g/mol. Determine the molecular formula of cadaverine.
- Polychlorinated biphenyls, PCBs, known to be dangerous environmental pollutants, are a group of Q.24

n	Q.24	Polychlorinated biphenyls, PCBs, known to be dangerous environmental pollutants, are a group of compounds with the general empirical formula $C_{12}H_mCl_{10-m}$, where m is an integer. What is the value of m, and hence the empirical formula of the PCB that contains 58.9% chlorine by mass ?							
sses.col	Q.25	Given the following en Empirical Formula	npirical formulae and mo Molecular weight	lecular weig	thts, compute the true m Empirical Formula	olecular formulae : Molecular weight	8881,		
las	(a)	CH ₂	84	(b)	CH ₂ O	150	22		
200	(c)	HO	34	(d)	HgČl	472	93(
Te l	(e)	HF	80				98		
MM	Q.26	Hexachlorophene, C	$_{13}H_6CI_6O_2$, is a germic	cide in soap	os. Calculate weight pe	ercent of each element i	n _		

- www.to Hexachlorophene, C13H6CI6O2, is a germicide in soaps. Calculate weight percent of each element in O.26 000 the compound.
- What is the empirical formula of a compound 0.2801 gm of which gave on complete combustion 8 Q.27 32 0.9482 gm of carbon dioxide and 0.1939 gm of water?
- What is the percentage of nitrogen in an organic compound 0.14 gm of which gave by Dumas method 82.1 c.c. of nitrogen collected over water at 27°C and at a barometric pressure of 774.5 mm? (aqueous b) Q.28 tension of water at 27°C is 14.5 mm)
- r) PH: Q.29 0.2000 gm of an organic compound was treated by Kjeldahl's method and the resulting ammonia was passed into 50 cc of M/4 H₂SO₄. The residual acid was then found to require 36.6 cc of M/2 NaOH for neutralisation. What is the percentage of nitrogen in the compound?
- **FREE Download Study Package from website:** Q.30 0.275 gm of an organic compound gave on complete combustion 0.22 gm of carbon dioxide and 0.135 gm of water. 0.275 gm of the same compound gave by Carius method 0.7175 gm of silver chloride. KARIYA What is the empirical formula of the compound?
 - 0.6872 gm of an organic compound gave on complete combustion 1.466 gm of carbon dioxide and Q.31 0.4283 gm of water. A given weight of the compound when heated with nitric acid and silver nitrate gave Ľ : SUHAG an equal weight of silver chloride. 0.3178 gm of the compound gave 26.0cc of nitrogen at 15°C and 765 mm pressure. Deduce the empirical formula of the compound?

Q.32 0.80g of the chloroplatinate of a mono acid base on ignition gave 0.262g of Pt. Calculate the mol wt of the base.

0.80g of the chloroplatinate of a mono acid base on ignition gave 0.262g of Pt. Calculate the mol wt of the base. A compound which contains one atom of X and two atoms of Y for each three atoms of Z is made by mixing 5.00 g of X, 1.15×10^{23} atoms of Y, 0.03 mole of Z atoms. Given that only 4.40 g of compound results. Q.33 Calculate the atomic weight of Y if the atomic weight of X and Z are 60 and 80 a.m.u. respectively. TEKO CLASSES,

CONCENTRATION TERMS

O.34 Calculate the molarity of the following solutions :

Ξ

- (a) 4g of caustic soda is dissolved in 200 mL of the solution.
- (b) 5.3 g of anhydrous sodium carbonate is dissolved in 100 mL of solution.

- (c) 0.365 g of pure HCl gas is dissolved in 50 mL of solution.
- 0.365 g of pure HCl gas is dissolved in 50 mL of solution.
 The density of a solution containing 13% by mass of sulphuric acid is 1.09 g/mL. Calculate the molarity of the solution.
 The mole fraction of CH₃OH in an aqueous solution is 0.02 and its density is 0.994 g cm⁻³. Determine its molarity and molality.
 The density of a solution containing 40% by mass of HCl is 1.2 g/mL. Calculate the molarity of the solution.
 A mixture of ethanol and water contains 54% water by mass. Calculate the mole fraction of alcohol in this solution. Q.35
- O.36
- O.37
- O.38
- O.39 15 g of methyl alcohol is present in 100 mL of solution. If density of solution is 0.90 g mL⁻¹. Calculate the mass percentage of methyl alcohol in solution.
- Q.40 Units of parts per million (ppm) or per billion (ppb) are often used to describe the concentrations of solutes in very dilute solutions. The units are defined as the number of grams of solute per million or per solutes in very dilute solutions. The units are defined as the number of grams of solute per million or per billion grams of solvent. Bay of Bengal has 1.9 ppm of lithium ions. What is the molality of Li⁺ in this water?
- Q.41

Q.42

FREE Download Study Package from website: www.tekoclasses.com 32 0.43 A solution of specific gravity 1.6 is 67% by weight. What will be the % by weight of the solution of same acid if it is diluted to specific gravity 1.2? Find out the volume of 98% w/w H_2SO_4 (density = 1.8 gm/ml) must be diluted to prepare 12.5 litres of \bigcirc

00 000,

- Q.44 Ïd 2.5 M sulphuric acid solution.
- Determine the volume of diluted nitric acid ($d = 1.11 \text{ g mL}^{-1}$, 19% w/v HNO₃) That can be prepared by Q.45 diluting with water 50 mL of conc. HNO₃ (d =1.42 g mL⁻¹, 69.8% w/v).
- A mixture of Xe and F_2 was heated. A sample of white solid thus formed reacted with H_2 , to give 112 ml \mathbf{r} Q.46 of Xe at STP and HF formed required 30 ml of 1 M NaOH for complete neutralization. Determine 2
- empirical formula. A certain oxide of iron contains 2.5 grams of oxygen for every 7.0 grams of iron. If it is regarded as a mixture of Eq. and Eq. (a) in the weight ratio x : y what is x : y (atomic weight of iron = 56). Q.47 mixture of FeO and Fe₂O₃ in the weight ratio x : y, what is x : y, (atomic weight of iron = 56). Ż
- Q.48
- In what ratio shoull you mix 0.2M NaNO₃ and 0.1M Ca(NO₃)₂ solution so that in resulting solution, the concentration of negative ion is 50% greater than conc. of positive ion. Sulfur dioxide is an atmospheric pollutant that is converted to sulfuric acid when it reacts with water vapour. This is one source of acid rain, one of our most pressing environmental problems. The sulfur dioxide content of an air sample can be determined as follows. A sample of air is bubbled through an aqueous solution of hydrogen peroxide to convert all of the SO₂ to H₂SO₄ Q.49

H₂O₂ + SO₂ \longrightarrow H₂SO₄ Titration of the resulting solution completes the analysis. In one such case, analysis of 1550 L of Los Angeles air gave a solution that required 5.70 ml of 5.96 x 10⁻³M NaOH to complete the titration. Determine the number of grams of SO₂ present in the air sample. Determine the number of grams of SO₂ present in the air sample. TEKO

SOME TYPICAL CONCENTRATION TERMS

Q.50 Calculate the St. of "20V" of H₂O₂ in terms of

Q.51

- (i) gm/L (ii) M (iii) % by volume Calculate composition of the final solution if 100 gm oleum labelled as 109% is added with (a) 9 gm water (b) 18 gm water (c) 120 gm water EUDIOMETRY10 ml of a mixture of CO, CH₄ and N₂ exploded with excess of oxygen gave a contraction of 6.5 ml. There was a further contraction of 7 ml, when the residual gas treated with KOH. What is the composition of the original mixture? When 100 ml of a O₂ O₃ mixture was passed through turpentine, there was reduction of volume by 20 ml. If 100 ml of such a mixture is heated, what will be the increase in volume? Q.52
- Q.53 20 ml. If 100 ml of such a mixture is heated, what will be the increase in volume?
- Q.54 9 volumes of a gaseous mixture consisting of a gaseous organic compound A and just sufficient amount of oxygen required for complete combustion yielded on burning 4 volumes of CO₂, 6 volumes of water vapour and 2 volumes of N₂, all volumes measured at the same temperature and pressure. If the compound BHOPAL A contained only C, H and N (i) how many volumes of oxygen are required for complete combustion and (ii) what is the molecular formula of the compound A?
- Q.55 60 ml of a mixture of nitrous oxide and nitric oxide was exploded with excess of hydrogen. If 38 ml of N₂ was formed, calculate the volume of each gas in the mixture.
- FREE Download Study Package from website: www.tekoclasses.com When a certain quantity of oxygen was ozonised in a suitable apparatus, the volume decreased by 4 ml. On addition of turpentine the volume further decreased by 8 ml. All volumes were measured at the same Q.56 temperature and pressure. From these data, establish the formula of ozone.
 - 10 ml of ammonia were enclosed in an eudiometer and subjected to electric sparks. The sparks were Q.57 continued till there was no further increase in volume. The volume after sparking measured 20 ml. Now 8 30 ml of O₂ were added and sparking was continued again. The new volume then measured 27.5 ml. All volumes were measured under identical conditions of temperature and pressure. V.D. of ammonia is 8.5. Calculate the molecular formula of ammonia. Nitrogen and Hydrogen are diatomic. EXERCISE # II
 Nitrogen (N), phosporus (P), and potassium (K) are the main nutrients in plant fertilizers. According to an industry according to a product response to the mass % of N. P. O. and K. O. in that order

- Q.1 an industry convention, the numbers on the label refer to the mass % of N, P₂O₅, and K₂O, in that order. Calculate the N: P: K ratio of a 30: 10: 10 fertilizer in terms of moles of each elements, and express it d <u>s</u> as x : y : 1.0.
- One mole of a mixture of N_2 , NO_2 and N_2O_4 has a mean molar mass of 55.4. On heating to a temperature at which N_2O_4 may be dissociated : $N_2O_4 \longrightarrow 2NO_2$, the mean molar mass tends to the lower value of 39.6. What is the mole ratio of N_2 : NO_2 : NO_2 in the original mixture? Q.2 of 39.6. What is the mole ratio of N_2 : NO_2 : N_2O_4 in the original mixture?
- Q.3 10 mL of gaseous organic compound contain C, H and O only was mixed with 100 mL of O_2 and exploded under identical conditions and then cooled. The volume left after cooling was 90 mL. On treatment with KOH a contraction of 20 mL was observed. if vapour density of compound is 23 derive **S** 10 mL of gaseous organic compound contain C, H and O only was mixed with 100 mL of O₂ and molecular formula of the compound.
- Q.4 Fluorocarbon polymers can be made by fluorinating polyethylene according to the reaction $(CH_2)n + 4nCoF_3 \longrightarrow (CF_2)_n + 2nHF + 4nCoF_2$, where n is a large integer. The CoF₃ can be regenerated by the reaction $2 \text{ CoF}_2 + \text{F}_2 \longrightarrow 2CoF_3$. If the HF formed in the first reaction cannot be reused, how many kg of fluorine are consumed per kg of fluorocarbon produced, $(CF_2)_n$? If HF can be recovered and electrolyzed to hydrogen and fluorine, and if this fluorine is used for regenerating CoF₃, **Y**

58881

TEKO

what is the net consumption of fluorine per kg of fluorocarbon?

,

produced is collected and on its treatment with KOH solution the volume of the gas decreases by one sixth. Calculate the molar ratio of the two acid in the original mixture. The reactions are $HCOOH(l) + H_2SO_4(l) \longrightarrow CO(g) + H_2SO_4$. $H_2O(liq.) H_2C_2O_4(l) + H_2SO_4(l) \longrightarrow CO(g) + CO_2(g) + H_2SO_4$. $H_2O(liq.)$ A sample of oleum is such that ratio of "free SO₃" by "combined SO₃" is equal to unity. Calculate its labelling in terms of percentage oleum. One litre of milk weighs 1.035 kg. The butter fat is 4% (v/v) of milk has density of 875 kg/m³. Find the density of fat free skimed milk O.14 Q.15 density of fat free skimed milk. A sample of fuming sulphuric acid containing H₂SO₄, SO₃ and SO₂ weighing 1.00 g is found to require Q.16 23.47 mL of 1.00 M alkali (NaOH) for neutralisation. A separate sample shows the presence of 1.50% SO_2 . Find the percentage of "free" SO_3 , H_2SO_4 and "combined" SO_3 in the sample. Chloride samples are prepared for analysis by using NaCl, KCl and NH_4Cl separately or as mixture. What minimum volume of 5 % by weight AgNO₃ solution(sp.gr, 1.04 g ml⁻¹) must be added to a sample of 0.3 g in order to ensure complete precipitation of chloride in every possible case? Q.17 In one process for waterproofing, a fabric is exposed to (CH₃)₂SiCl₂ vapour. The vapour reacts with In one process for waterproofing, a fabric is exposed to $(CH_3)_2SiCl_2$ vapour. The vapour reacts with hydroxyl groups on the surface of the fabric or with traces of water to form the waterproofing film $[(CH_2), SiOl_2]$ by the reaction Q.18 $[(CH_3)_2SiO]_n$, by the reaction where n stands for a large integer. The waterproofing film is deposited on the fabric layer upon layer. Each layer is 6.0 Å thick [the thickness of the (CH₂)₂SiO group]. How much (CH₂) SiO group] waterproof a minimum field of the fabric layer upon layer. waterproof one side of a piece of fabric, 1.00 m by 3.00 m, with a film 300 layers thick ? The density of **g** the film is 1.0 g/cm^3 . 32 00 Diatoms, microscopic organism, produce carbohydrates from carbon dioxide and water by normal O.19 photosynthesis: $\rightarrow C_6 H_{12}O_6 + 6O_2$. During the first five years of life whales gain 75 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{solar energy}$ kg of mass per day. Assuming that the mass gain in the first five years of a whale's life is due to the production of carbohydrates, Sir) calculated the volume of CO, per day at 0°C and 101 kPa that must be used by the diatoms to produce the carbohydrates. ż There is 0.23 mL of dissolved CO₂ per *l* sea water (at 24°C and 101 kPa). If diatoms can completely remove carbon dioxide from the water they process, what volume of water would they process to **i** produced the carbohydrates required by a blue whale per day? **Director : SUHAG R. KARIYA** 3% of the mass of a 9.1×10^4 kg adult whale is nitrogen. What is the maximum mass of NH₄⁺ that can become available for other marine organisms if one adult whale dies ? 18% of a adult whale's mass is carbon which can be returned to the atmosphere as CO₂ being removed from there by weathering of rocks containing calcium silicate. $CaSiO_3(s) + 2CO_2 + 3H_2O(l) \longrightarrow Ca^{2+}(aq) + 2HCO_3^{-}(aq) + H_4SiO_4(aq)$ What are the maximum grams of CaSiO₃ that can be weathered by the carbon dioxide produced from the decomposition of 1000 blue whales, the number estimated to die annually? 20 ml of a mixture of methane and a gaseous compound of Acetylene series were mixed with 100 ml of

FREE Download Study Package from website: www.tekoclasses.com

(a)

(b)

(c)

(d)

Q.20 oxygen and exploded. The volume of the products after cooling to original room temperature and pressure, TEKO CLASSES, was 80 ml and on treatment with potash solution a further contracting of 40 ml was observed. Calculate (a) the molecular formula of the hydrocarbon, (b) the percentage composition of the mixture.

- Q.21
- In a solution the concentrations of CaCl₂ is 5M & that of MgCl₂ is 5m. The specific gravity of solution is 1.05, calculate the concentration of Cl⁻ in the solution in terms of Molarlity. 3.6 g of Mg is burnt in limited supply of oxygen. The residue was treated with 100 mL of H₂SO₄ (35% by mass, 1.26 g mL⁻¹ density). When 2.463 L of H₂ at 760 mm Hg at 27^oC was evolved. After the reaction, H₂SO₄ was found to have a density of 1.05 g mL⁻¹. Assuming no volume change in H₂SO₄ solution. Find (i) % by mass of final H₂SO₄ (ii) % by mass of Mg converted to oxide (iii) mass of oxygen used. (Mg = 24, S= 32) Q.22

 - (iii) mass of oxygen used. (Mg = 24, S = 32)
- Q.23 A mixture of H_2 , N_2 & O_2 occupying 100 ml underwent reaction so as to form $H_2O_2(l)$ and $N_2H_2(g)$ as the only products, causing the volume to contract by 60 ml. The remaining mixture was passed through pyrogallol causing a contraction of 10 ml. To the remaining mixture excess H_2 was added and the above reaction was repeated, causing a reduction in volume of 10 ml. Identify the composition of the 0 98930 58881, BHOP/ initial mixture in mol %. (No other products are formed)
- For a gas A_2B_6 dissociating like $A_2B_6(g) \longrightarrow A_2(g) + 3B_2(g)$, Vapour densities of the mixture at Q.24 various time is observed. From the data & informations given.

Informations

- (1)At t = 0, reaction starts with 1 mole of A_2B_6 only & observed V.D. = 50.
- (2)Density of A_2B_6 relative to A_2 is 2.5.
- (3) Reaction is complete at time t = 40 min.

- (i)
- (ii)
- (iii)
- (a)
- (b)
- (c)
- (3) Reaction is complete at time t = 40 min. **Observations** time t = 0, V.D. = 50 time t = 10 min., V.D. = 25 time t = 20 min., V.D.=20 Calculate Molecular weight of A_2B_6 , Atomic weight of A, Atomic weight of B. Mole percent of A_2B_6 , A_2B_6 , $A_2 \& B_2$ at t = 10 min. Mass percent of A_2B_6 , $A_2 \& B_2$ at t = 20 min. Rate of disappearance of A_2B_6 between t = 10 to t = 20, if it is assumed that it disappears uniformly is (d)
- (e)
- FREE Download Study Package from website: www.tekoclasses.com during this time interval. [Rate of disappearance = $\frac{Mole\ dissociated}{Time\ taken}$] Vap. density of mixture at t = 40 min. An **impure** sample of CH₃COONa, Na₂SO₄ & NaHCO₃ containing equal moles of each component was heated to cause liberation of CO₂ gas [Assume no dissociation of CH₃COONa to give CO₂ gas]. If 7.389 *l* of CO₂ gas at 1 atm pressure & 300 K is evolved & it is known that the sample contains 50% at 1 we may input impurities (which are not involved in any reactions) then calculate Q.25 by mass inert impurities (which are not involved in any reactions) then calculate
 - (a) moles of each component
 - (b) wt. of total impure sample
 - **Director : SUHAG** (c) Volume of 0.2 M HCl required for complete neutralisation of that wt. of fresh impure sample as obtained in (b) part. [Assume no interference by weaker acid (if formed) in neutralization process in presence of strong acid]
 - An **impure** sample of $CuSO_4$. $5H_2O$ (having 40% purity) undergoes following sequence of reactions in a reaction flask having large amount of KCN $CuSO_4.5H_2O \longrightarrow CuSO_4 + 5H_2O$ (1) $CuSO_4+KCN \longrightarrow Cu(CN)_2 + K_2SO_4$ (2) $Cu(CN)_2 \longrightarrow Cu_2(CN)_2 + (CN)_2\uparrow$ (3) $Cu(CN) + KCN \longrightarrow K [Cu(CN) \downarrow$ (4) Q.26

 $Cu_2(CN)_2 + KCN \longrightarrow K_3[Cu(CN)_4]$(4)

If % yield of react. (1) is 100% (2) is 80% (3) is 60% & (4) is 50%. Calculate

- (i) wt. of impure sample of CuSO₄.5H₂O required for producing 28.5 gm of complex compound $K_3[Cu(CN)_4]$
- (ii) vol. of (CN)₂ gas produced at STP if wt. of impure sample of CuSO₄.5H₂O as obtained in 'a' is reacted

EXERCISE # IIIEqual volumes of 10% (v/v) of HCl is mixed with 10% (v/v) NaOH solution. If density of pure NaOHis 1.5 times that of pure HCl then the resultant solution be.(A) basic(B) neutral(C) acidic(D) can't be predicted.A definite amount of gaseous hydrocarbon having (carbon atoms less than 5) was burnt with sufficient amount of O2. The volume of all reactants was 600 ml, after the explosion the volume of the products[CO2(g) and H2O(g)] was found to be 700 ml under the similar conditions. The molecular formula of the compound is(A) CaHa(B) CaHa(C) CaHa(D) CaHaa Q.1 Q.2 $(C) C_3 H_4$ $(B) C_3 H_6$ (D) $C_4 H_{10}$ $(A) C_3 H_8$ Q.3 A mixture (15 mL) of CO and CO₂ is mixed with V mL (excess) of oxygen and electrically sparked. The volume after explosion was (V + 12) mL. What would be the residual volume if 25 mL of the original mixture is exposed to KOH. All volume measurements were made at the same temperature and pressure (A) 7 mL (B) 12 mL (C) 10 mL (D) 9 mL One gram of the silver salt of an organic dibasic acid yields, on strong heating, 0.5934 g of silver. If the Q.4 weight percentage of carbon in it 8 times the weight percentage of hydrogen and one-half the weight percentage of oxygen, determine the molecular formula of the acid. [Atomic weight of Ag = 108] (A) $C_4H_6O_4$ (B) $C_4H_6O_6$ (C) $C_2H_6O_2$ (D) $C_5H_{10}O_5$ The density of vapours of a particular volatile specie was found to be 10 miligram / ml at STP. Its atomic Q.5 weight in amu is 0 (A) 20 amu (B) 112 amu (C) 224 amu (D) data insufficient A mixture of C_3H_8 (g) & O_2 having total volume 100 ml in an Eudiometry tube is sparked & it is observed that a contraction of 45 ml is observed what can be the composition of reacting mixture. (A) 15 ml C_3H_8 & 85 ml O_2 (B) 25 ml C_3H_8 & 75 ml O_2 (C) 45 ml C_3H_8 & 55 ml O_2 (D) 55 ml C_3H_8 & 45 ml O_2 Carbon can react with O_2 to form CO & CO₂ depending upon amount of substances taken. If each option is written in an order like (x, y, z, p) where y represents males of C taken. we are the of TQ.6 Q.7 Sir) PH: option is written in an order like (x, y, z, p) where x represents moles of C taken, y represents moles of O₂ taken z represents moles of CO formed & p represents moles of CO₂ formed, then which options are correct. ¥. (A) (1, 0.75, 0.5, 0.5) (B)(1, 0.5, 0, 0.5)ż (C)(1, 0.5, 0.5, 0)(D) (1, 2, 1, 1) **TEKO CLASSES, Director : SUHAG R. KARIYA (S.** Q.8 One mole mixture of CH_4 & air (containing 80% N₂ 20% O₂ by volume) of a composition such that when underwent combustion gave maximum heat (assume combustion of only CH_4). Then which of the statements are correct, regarding composition of initial mixture.(X presents mole fraction) (A) $X_{CH_4} = \frac{1}{11}, X_{O_2} = \frac{2}{11}, X_{N_2} = \frac{8}{11}$ (B) $X_{CH_4} = \frac{3}{8}, X_{O_2} = \frac{1}{8}, X_{N_2} = \frac{1}{2}$ (C) $X_{CH_4} = \frac{1}{6}, X_{O_2} = \frac{1}{6}, X_{N_2} = \frac{2}{3}$ (D) Data insufficient (mol/L)Q.9 To 500 ml of 2 M impure H₂SO₄ sample, NaOH soluton 1 M was $[\mathrm{H}^+]$ slowly added & the followng plot was obtained. The percentage 1.5 purity of H_2SO_4 sample and slope of the curve respectively are: 1.0(B) 75%, $-\frac{1}{2}$ (A) 50%, $-\frac{1}{3}$ 0.5 (C) 75%, −1 (D) none of these vol. of NaOH added (L)

FREE Download Study Package from website: www.tekoclasses.com

Q.10	 Two gaseous ions of unknown charge & mass initially at rest are subjected to same potential differer for accelerating the charges & then subjected to same magnetic field (placed perpendicular to the veloc & following observations were made. Obs 1. Before entering the magnetic field zone both ions had same kinetic energy. Obs 2. The radius of curvature of ion A was greater than that of B. Stat 1: The magnitude of charge on both the ions should be same Stat 2: Particle A is more massive than particle B Stat 3: The e/m ratio of A is higher than that of B (A) Only Stat 1 & Stat 2 are correct (B) Only Stat 3 is correct (D) Only Stat 1 is incorrect 							
Q.11	Two gases A and B which react according to the equation $aA_{(g)} + bB_{(g)} \longrightarrow cC_{(g)} + dD_{(g)}$ to give two gases C and D are taken (amount not known) in an Eudiometer tube (operating at a constant Pressure and temperature) to cause the above.							
Q.12	 If on causing the reaction there is no volume change observed then which of the following statement is/ are correct. (A) (a + b) = (c + d) (B) average molecular mass may increase or decrease if either of A or B is present in limited amount. (C) Vapour Density of the mixture will remain same throughout the course of reaction. (D) Total moles of all the component of taken mixture will change. Question No. 12 to 13 (2 questions) A mixture of H ₂ and Acetylene (C ₂ H ₂) was collected in a Eudiometer tube. Then, 60 ml of oxygen were also introduced. The resulting mixture of all the gases was exploded. After cooling a resulting gaseous mixture passes through Caustic potash solution a contraction of 32 ml occurred and 13 ml of oxygen alone were left behind.							
Q.13	(A) 21 ml Percentage compositio (A) 53.3, 46.7	(B) 30 ml on of the gaseous mixtur (B) 46.7, 53.3	(C) 45 ml e of H ₂ & acetylene are (C) 15.7, 84.3	(D) none (D) 84.3, 15.7	R. K. Sir) PI			
<i>Question No. 14 to 17 (4 questions)</i> A 4.925 g sample of a mixture of CuCl ₂ and CuBr ₂ was dissolved in water and mixed thoroughly wi 5.74 g portion of AgCl. After the reaction the solid, a mixture of AgCl and AgBr, was filtered, wash and dried. Its mass was found to be 6.63 g.								
Q.14	% By mass of $CuBr_2$ in (A) 2.24	n original mixture is (B) 74.5	(C) 45.3	(D) None	UHAG F			
Q.15	% By mass of Cu in or (A) 38.68	iginal mixture is (B) 19.05	(C) 3.86	(D) None	tor : SI			
Q.16	% by mole of AgBr in (A) 25	dried precipate is (B) 50	(C) 75	(D) 60	3, Direc			
Q.17	No. of moles of Cl ^r ion (A) 0.06	n present in the solution (B) 0.02	after precipitation are (C) 0.04	(D) None	TEKO CLASSE			

		Question No. 18 to 20 (3 questions) NaBr used to produce AgBr for use in photography can be self prepared as follows:								
		Fe + E $FeBr_2$ Fe_3Br_3	$Br_2 \longrightarrow FeBr_2$ + $Br_2 \longrightarrow Fe_3Br_8$ + $Na_2CO_3 \longrightarrow NaB$	(1) (2) $r + CO_2 + Fe_3O_4$	(not balanced) (3) (not balanced)	OLE CONC				
		How much Fe in kg is consumed to produce 2.06×10^3 kg NaBr(4)								
	Q.18	Mass of iron required (A) 420 gm	to produce 2.06×10^3 k (B) 420 kg	kg NaBr (C) 4.2 × 10 ⁵ kg	(D) 4.2×10^8 gm	age 20 of 2				
	Q.19	If the yield of (ii) is 60% & (iii) reaction is 70% then mass of iron required to produce 2.06×10^3 kg NaBr								
		(A) 10^5kg	(B) 10 ⁵ gm	(C) 10^3 kg	(D) None	_				
om	Q.20	If yield of (iii) reaction (A) 20	is 90% then mole of CO (B) 10	D_2 formed when 2.06 × 2 (C) 40	10 ³ gm NaBr is formed (D) None	ВНОРА				
vww.tekoclasses.co		Question No. 21 to 23 (3 questions) In the gravimetric determination of sulfur the ignited precipitate of $BaSO_4$ sometimes partially reduces to BaS. This cause an error, of course, if the analyst does not realize this and convert the BaS back to $BaSO_4$. Suppose a sample which contains 32.3% SO_3 is analyzed and 20.0% of the final precipitate that is weighed is BaS. (80.0% is $BaSO_4$). What percentage of SO_3 in the sample would the analyst calculate if be assume the entire precipitate as $PaSO_4$? Percent the superior if PaS_4 were 20% by reals								
bsite: v	Q.21	Calculate the mass of s (A) 106.3 gm	cample, assuming 100 gr (B) 114.35 gm	n precipitate is formed (C) 110.5 gm	(D) None	32 00 00				
from we	Q.22	Percentage of SO ₃ in the (A) 30	he sample, calculated by (B) 30.5	analyst is (if the assume (C) 32	the entire precipiate as BaSO ₄) (D) 32.3	H: (0755)-				
age	Q.23	If BaS was 20% by mole in precipitate, then percentage of SO ₃ in the sample calculated by analyst is (if $\frac{1}{2}$								
Pack		(A) 30	(B) 30.5	(C) 32	(D) 32.3	. K. S				
Study		Question No. 24 to 25 are based on the following Passage. Read it carefully & answer the guestions that follow								
Download		A monobasic acid of weight 15.5 gms is heated with excess of oxygen & evolved gases when passed through KOH solution increased its weight by 22 gms and when passed through anhydrous CaCl ₂ , increased its weight by 13.5 gms. When the same mass of this organic acid is reacted with excess of silver nitrate solution form 41.75 gm silver salt of the acid which on ignition gave the residue of weight 27 gm.								
FREE	Q.24	The molecular formula (A) C_2H_6	of the organic acid is (B) $C_2H_5O_2$	(C) $C_2 H_6 O_2$	(D) C_2H_4O	tor : SUF				
	Q.25	The molar masses of the acid & its silver salt respectively are								
		(A) 60, 168	(B) 167, 60	(C) 60, 167	(D) 168, 60	S, D				
						VSSE				
						CLA				
						TEKO				

Question No. 26 to 28 (3 questions) Page 21 of 24 MOLE CONCEPT N₂O₅ and H₂O can react to form HNO₃, according to given reaction $N_2O_5 + H_2O \longrightarrow 2HNO_3$ the concentration of a mixture of HNO_3 and N_2O_5 (g) can be expressed similar to oleum. Then answer the following question. Find the percentage labelling of a mixture containing 23 gm HNO₃ and 27 gm N_2O_5 . Q.26 (A) 104.5% (B) 109% (C) 113.5% (D) 118% Q.27 Find the maxmum and minimum value of percentage labelling (B) 116.66%, 0% (C) 116.66%, 100% (A) 133.3 % (D) None O.28 Find the new labelling if 100 gm of this mixture (original) is mixed with 4.5 gm water Find the new labelling if 100 gm of this mixture (original) is mixed with 4.5 gm water (A) $100 + \frac{4.5}{1}$ (B) $100 + \frac{4.5}{1.045}$ (C) $100 + \frac{4.5}{104.5}$ (D) $100 + \frac{4.5}{1.09}$ Question No. 29 and 30 are based on the following piece of information. Mark the appropriate options on the basis of information. 342 gm of 20% by mass of Ba(OH)₂ solution (sp. gr. 0.57) is reacted with 200 ml of 2M HNO₃ according to given balanced reaction. Ba(OH)₂ + 2HNO₃ \longrightarrow Ba(NO₃)₂ + 2H₂O The nature of the final solution is FREE Download Study Package from website: www.tekoclasses.com The nature of the final solution is Q.29 000 000' (A) acidic (C) basic (B) neutral (D) can't say 33 Q.30 If density of final solution is 1.01 gm/ml then find the molarity of the ion in resulting solution by which nature of the above solution is identified, is K. Sir) PH: (0755)-(A) 0.5 M (B) 0.8 M (D)1M(C) 0.4 M Question No. 31 & 32 are based on the piece of information. For a gaseous reaction, $2A(g) \longrightarrow 3B(g) + C(g)$ Whose extent of dissociation depends on temperature is performed in a closed container, it is known that extent of dissociation of A is different in different temperature range. With in a temperature range it TEKO CLASSES, Director : SUHAG R. KARIYA (S. is constant. (Temperature range $T_0 - T_1, T_1 - T_2, T_2 - T_{\infty}$). A plot of P v/s T is drawn under the given condition. P(atm) If $\alpha_{T_i - T_{i+1}}$ is the degree of dissociation of A then in the temperature Q.31 range $T_i \rightarrow T_{i+1}$ (A) $\alpha_{T_0-T_1}$ is lowest (B) $\alpha_{T_0-T_1}$ is highest (C) $\alpha_{T_2-T_m} = 1$ (D) $\alpha_{T_2-T_m} = 0$ T(k) T_2 Q.32 If initially 1 mole of A is taken in a 1 l container then [R = 0.0821 atm lit / k] (A) $\alpha_{T_0-T_1} = \frac{1}{2\sqrt{3R}} + \frac{1}{2}$ (B) $\alpha_{T_0 - T_1} = \frac{1}{2\sqrt{3R}} - \frac{1}{2}$ (D) $\alpha_{T_1 - T_2} = \frac{1}{R} - 1$ (C) $\alpha_{T_1 - T_2} = \frac{1}{R} + 1$

Which has maximum number of atoms of oxygen (A) 10 ml $H_2O(l)$ (B) 0.1 mole of V_2O_5 (C) 12 gm $O_3(g)$ (D) 12.044 ×10²² molecules of CO_2 In a mass spectrometry experiment, various ions H⁺, Li⁺, O²⁺ & N₃⁺ were projected with a same velocity into a same magnetic field zone (alligned perpendicular to the direction of velocity). The sheet on which they are striking is pierced at certain points (marked as H_1 , H_2 etc.) as shown in the diagram. It is known that H⁺ comes back to zone-I from H₂ when projected from H₁. Mark out the correct options. zone-IIQ.34

- (A) Out of all remaining ions when projected from H_1 , only N_3^+ will come back to zone-I.
- (B) When all the remaining ions were projected from H_2 , only O^{2+} will come back in zone-I.
- (C) When all the remaining ions were projected from H₃, none of the them will come back to zone-I.
- (D) When all the remaining ions were projected from H_4 , none of the them will come back to zone-I.

EXERCISE # IV

- An evacuated glass vessel weighs 50 gm when empty, 148.0 g when filled with liquid of density Q.1 0.98 gml⁻¹ and 50.5 g when filled with an ideal gas at 760 mm at 300 K. Determine the molecular weight of the gas. [JEE '98,3]
 - At 100° C and 1 atmp, if the density of liquid water is 1.0 g cm⁻³ and that of water vapour is 0.0006 g cm⁻³, then the volume occupied by water molecules in 1 L of steam at that temperature is : (A) $6 \, \text{cm}^3$ (B) 60 cm^3 (C) $0.6 \,\mathrm{cm^3}$ (D) $0.06 \,\mathrm{cm}^3$

[JEE '2001 (Scr), 1]

How many moles of e⁻ weigh one Kg [JEE'2002 (Scr), 1] (A) 6.023×10^{23} (B) $\frac{1}{9.108} \times 10^{31}$ (C) $\frac{6.023}{9.108} \times 10^{54}$ (D) $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Calculate the molarity of pure water using its density to be 1000 kg m⁻³.

[JEE'2003]

One gm of charcoal absorbs 100 ml 0.5 M CH₃COOH to form a monolayer, and thereby the molarity of CH₃COOH reduces to 0.49. Calculate the surface area of the charcoal adsorbed by each molecule of acetic acid. Surface area of charcoal = $3.01 \times 10^2 \text{ m}^2/\text{gm}$. [JEE'2003]

Calculate the amount of Calcium oxide required when it reacts with 852 gm of P_4O_{10} . Q.6 [JEE 2005] $6CaO + P_4O_{10} \longrightarrow 2Ca_3(PO_4)_2$

TEKO CLASSES, Director : SUHAG Q.7 20% surface sites have adsorbed N₂. On heating N₂ gas evolved from sites and were collected at 0.001 atm and 298 K in a container of volume is 2.46 cm³. Density of surface sites is 6.023×10^{14} /cm² and surface area is 1000 cm^2 , find out the no. of surface sites occupied per molecule of N₂. [**JEE 2005**]

KARIYA (S. R. K. Sir) PH: (0755)- 32

ANSWER KEY EXERCISE # 1

0 98930 58881, BHOPAL TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

EXERCISE # II

		<u>EXERCISE # II</u>							EPT
	Q.1	10.07 : 0.662 : 1	Q.2	0.5:0.1:0.4	Q.3	C ₂ H ₆ O	Q.4	1.52 kg, 0.76 kg	ECONC
Q.5 (a) $A_3B_4 = 2 \& A_2 = 1$; (b) $A_2B_4 = \frac{1}{2} \& B_2 = 1$ (c) $A_2B_4 = 0.5 \& A_3B_4 = 0.5$									4MOL
	Q.6	24. 51 ml	Q.7	(a)10 mol, (b)	25 lit., ((c) 2.5	Q.8	$W_{A}: W_{B} = 0.524$	ge 24 of 2
	Q.9	122.6	Q.10	Brand B	Q.11	5 molecule, [C	o(NH ₃)	₅ (NO ₂)]Cl ₂	Pa
	Q.12	9.095×10^5 lit	Q.13	$\frac{\text{HCOOH}}{\text{H}_2\text{C}_2\text{O}_4} = \frac{4}{1}$	Q.14	110.11%	Q.15	1.041 gm/ml	HOPAL
.com	Q.16	$H_2SO_4 = 35.38\%$, Fre	$e SO_3 =$	= 63.1%, combi	ned SO	₃ = 28.89%	Q.17	18.38 ml	1, 84
lasses.	Q.18	0.9413 gram Q.19	(a) 560)00 lit/day, (b) 2	2.6×10^{6}	⁸ litres, (c) 3510) kg/day	$(d) 7.917 \times 10^7 \text{ kg}$	5888
tekocl	Q.20	(b) 50	Q.21	[Cl [−]] = 13.36]	М	Q.22 (i) 28%	6, (ii) 33	.33%, (iii) 0.8g	98930
www.	Q.23	$N_2 = 30 \text{ ml}, H_2 = 40 \text{ m}$	ป	L			1		0, 0
ite:	Q.24	(a) 100, 20, 10; (b) 33	.33%, 1	6.67%, 50%; (c	2) 50%,	20%, 30%; (d)	0.0167	mol/min; (e) 12.5	00 00
webs	Q.25	(a) 0.6, (b) 369.6 gm (c)6 (<i>l</i>)	\bigcirc	Q.26	(i) 521.25 gm,	(ii) 2.24	1	55)- 32
Q.27 In initial gaseous mixture gases of same molar mass are present. Avg. molar mass of the mixture will be 28.								H: (07	
kage		After the appropriate reactions, the gas that will remain will be N_2 only since both C_2H_4 and CO will get oxidised to CO ₂ which is then removed from KOH.							Sir) P
y Pac		:. Average Molar mass of final gaseous mixture is 28							
Stud		<u>EXERCISE # III</u>							IYA (S.
nload	Q.1	А	Q.2	А	Q.3	С	Q.4	В	KAR
IWO	Q.5	D	Q.6	A,B	Q.7	А	Q.8	А	5
Ă	Q.9	D	Q.10	A	Q.11	A,C	Q.12	C	HAC
E	Q.13	B	Q.14	C	Q.15	A	Q.16	В	SU
E	Q.17	B	Q.18 Q.22	B,C,D	Q.19	B	Q.20	B	٩. ١
	0.25	C C	0.26	B	Q.23 Q.27	C C	0.24	B	ect
	Q.29	C	Q.30	Ā	Q.31	Ā	Q.32	D	ם̈
	Q.33	С	Q.34	B,C,D					ĴES,
				<u>EXERCI</u>	<u> SE</u> #1	V			CLASS
	0.1	123 g/mol	0.2	C	0.3	_ D	0.4	55.5 mol L ^{-1}	00
	Q.5	$5 \times 10^{-19} \mathrm{m}^2$	Q.6	1008 gm	Q.7	$\frac{1}{2}$	~ ••		TEN